Saturday, November 7, 2015

#ThanksEinstein, #HelloJetman





Smithsonian:
In 1912, struggling to fashion the equations, he wrote to a colleague that 'Never before in my life have I tormented myself anything like this.' Yet, just a year later, while working in Zurich with his more mathematically attuned colleague Marcel Grossmann, Einstein came tantalizingly close to the answer. Leveraging results from the mid-1800s that provided the geometrical language for describing curved shapes, Einstein created a wholly novel yet fully rigorous reformulation of gravity in terms of the geometry of space and time.

It was a hundred years ago this November, and Albert Einstein was enjoying a rare moment of contentment. Days earlier, on November 25, 1915, he had taken to the stage at the Prussian Academy of Sciences in Berlin and declared that he had at last completed his agonizing, decade-long expedition to a new and deeper understanding of gravity. The general theory of relativity, Einstein asserted, was now complete.

The month leading up to the historic announcement had been the most intellectually intense and anxiety-ridden span of his life. It culminated with Einstein’s radically new vision of the interplay of space, time, matter, energy and gravity, a feat widely revered as one of humankind’s greatest intellectual achievements.

Live Science:
Time after time, experiments have proved that Einstein's theory of general relativity, which describes the way gravity behaves, especially when dealing with high speeds and large masses. In the new study, physicists looked at gobs of data on planetary orbits to look for tiny anomalies that couldn't be explained by either Isaac Newton's theory of gravity — in which gravity is a force between objects that depends on their masses — or Einstein's general relativity theory, which says gravity is a warping of space-time itself.

And Einstein's theory holds up, once again.

"They've assembled decades of data of planetary motions to look for deviations from Lorentz invariance, a cornerstone of both [special and general relativity] and the Standard Model of particle physics," said Paul M. Sutter, an astrophysicist at Ohio State University who was not involved in the new study. "If someone finds evidence for this [violation], it's instant Nobel."

More information:
» Popular Science: "General Relativity: 100 Years Old And Still Full Of Surprises"
» The Guardian: "Relativity versus quantum mechanics"
» Smithsonian: "Why String Theory Still Offers Hope We Can Unify Physics"

No comments: